版权说明 操作指南
首页 > 成果 > 详情

Effectively Integrating CNN and Low-Complexity Transformer for Lung Cancer Tumor Prediction After Neoadjuvant Chemoimmunotherapy

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jiancun Zhou;Xianzhen Tan;Hulin Kuang;Jianxin Wang
通讯作者:
Kuang, HL
作者机构:
[Xianzhen Tan; Hulin Kuang; Jianxin Wang] Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China
College of Information and Electronic Engineering, Hunan City University, Yiyang, China
[Jiancun Zhou] Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University, Changsha, China<&wdkj&>College of Information and Electronic Engineering, Hunan City University, Yiyang, China
通讯机构:
[Kuang, HL ] C
Cent South Univ, Sch Comp Sci & Engn, Hunan Prov Key Lab Bioinformat, Changsha 410083, Peoples R China.
语种:
英文
关键词:
Accuracy;Computational modeling;Computed tomography;Lung cancer;Predictive models;Transformers;Feature extraction;Complexity theory;Convolutional neural networks;Lesions;lung cancer tumor prediction;neoadjuvant chemoimmunotherapy;hybrid convolutional neural network (CNN) and Transformer network;low-complexity self-attention
期刊:
大数据挖掘与分析(英文)
ISSN:
2096-0654
年:
2025
卷:
8
期:
5
页码:
981-996
基金类别:
National Key Research and Development Program of China [2021YFF1201200]; Science and Technology Innovation Program of Hunan Province [2022RC1031]; Natural Science Foundation of Hunan Province [2023JJ50354]; Scientific Research Project of Hunan Education Department [24A0575]; High Performance Computing Center of Central South University
机构署名:
本校为其他机构
院系归属:
信息与电子工程学院
摘要:
A novel hybrid model combining a convolutional neural network (CNN) and a low-complexity Transformer network is introduced for predicting lung cancer response to neoadjuvant chemoimmunotherapy using computed tomography scans. This approach is crucial as it assists clinicians in identifying patients likely to benefit from treatment and in assessing their prognosis. The model employs channel splitting to minimize parameter count. It then leverages both CNN for local feature extraction and a streamlined Transformer for global feature comprehension. To enhance efficiency, a novel self-attention me...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com