版权说明 操作指南
首页 > 成果 > 详情

Attention-based deep neural network for driver behavior recognition

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xiao, Weichu;Liu, Hongli;Ma, Ziji;Chen, Weihong
通讯作者:
Liu, Hongli(hongliliu@hnu.edu.cn)
作者机构:
[Xiao, Weichu; Liu, Hongli; Ma, Ziji] Hunan Univ, Coll Elect & Informat Engn, Changsha, Peoples R China.
[Xiao, Weichu; Chen, Weihong] Hunan City Univ, Coll Informat & Elect Engn, Yiyang, Peoples R China.
通讯机构:
[Hongli Liu] C
College of Electrical and Information Engineering, Hunan University, China
语种:
英文
关键词:
Attention;Deep learning;Driver behavior recognition;Residual networks
期刊:
Future Generation Computer Systems
ISSN:
0167-739X
年:
2022
卷:
132
页码:
152-161
基金类别:
This work was supported in part by the National Nature Science Foundation of China under Grant Nos. 61971182 and 62173133 , in part by the Natural Science Foundation of Hunan province, China under Grant Nos. 2020JJ4213 , 2021JJ30145 and 2021JJ30082 , in part by Changsha City Science and Technology Department Funds, China under Grant Nos. 2020CSKJ2020-12 and KQ2004007 .
机构署名:
本校为其他机构
院系归属:
信息与电子工程学院
摘要:
Driver behavior recognition is crucial for traffic safety in intelligent transportation systems. To understand the driver distraction behavior, deep learning methods has been used to learn the hierarchical features of receptive field images. However, most of existing studies focus on investing in spatial components based on the convolutional neural network for visual analysis. In this study, an attention-based deep neural network (ADNet) method is proposed for driver behavior recognition. The ADNet framework is first presented, which integrates...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com