版权说明 操作指南
首页 > 成果 > 详情

Efficient Class Incremental Learning for Multi-label Classification of Evolving Data Streams

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Shi, Zhongwei;Wen, Yimin*;Xue, Yun;Cai, Guoyong
通讯作者:
Wen, Yimin
作者机构:
[Shi, Zhongwei] Guilin Univ Elect Technol, Sch Comp Sci & Engn, Guilin, Peoples R China.
[Wen, Yimin; Cai, Guoyong] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin, Peoples R China.
[Xue, Yun] Hunan City Univ, Sch Municipal & Surveying Engn, Changsha, Hunan, Peoples R China.
通讯机构:
[Wen, Yimin] G
Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin, Peoples R China.
语种:
英文
关键词:
class incremental learning;concept drift;evolving data streams;multi-label classification
期刊:
Proceedings of the International Joint Conference on Neural Networks
ISSN:
2161-4393
年:
2014
页码:
2093-2099
会议名称:
International Joint Conference on Neural Networks (IJCNN)
会议论文集名称:
IEEE International Joint Conference on Neural Networks (IJCNN)
会议时间:
JUL 06-11, 2014
会议地点:
Beijing, PEOPLES R CHINA
会议主办单位:
[Shi, Zhongwei] Guilin Univ Elect Technol, Sch Comp Sci & Engn, Guilin, Peoples R China.^[Wen, Yimin] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin, Peoples R China.^[Xue, Yun] Hunan City Univ, Sch Municipal & Surveying Engn, Changsha, Hunan, Peoples R China.^[Cai, Guoyong] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin, Peoples R China.
会议赞助商:
IEEE
出版地:
345 E 47TH ST, NEW YORK, NY 10017 USA
出版者:
IEEE
ISBN:
978-1-4799-1484-5
机构署名:
本校为其他机构
院系归属:
市政与测绘工程学院
摘要:
Multi-label stream classification has not been fully explored for the unique properties of large data volumes, realtime, label dependencies, etc. Some methods try to take into account label dependencies, but they only focus on the existing frequent label combinations, leading to worse performance for multi-label classification. To deal with these problems, this paper proposes an algorithm which dynamically recognizes some new frequent label combinations and updates the trained classifier by class incremental learning strategy. Experimental results over both real-world...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com