版权说明 操作指南
首页 > 成果 > 详情

Rock lithology classification and parameter sensitivity analysis based on wavelet scattering transform and support vector machine

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang, Sheng;Huang, Ning;Chen, Qianqian;Deng, Zongwei;Zhang, Liang
通讯作者:
Zhang, S
作者机构:
[Zhang, Sheng] Hunan City Univ, Sch Management, Yiyang 413000, Hunan, Peoples R China.
[Zhang, Liang; Huang, Ning; Zhang, Sheng; Deng, Zongwei] Hunan City Univ, Sch Civil Engn, Yiyang 413000, Hunan, Peoples R China.
[Zhang, Liang; Zhang, Sheng; Deng, Zongwei] Hunan City Univ, Higher Educ Inst Hunan Prov, Key Lab Green Bldg & Intelligent Construct, Yiyang 413000, Hunan, Peoples R China.
[Chen, Qianqian] Hunan Commun Polytech, Inst Civil Engn, Changsha 410000, Hunan, Peoples R China.
通讯机构:
[Zhang, S ] H
Hunan City Univ, Sch Management, Yiyang 413000, Hunan, Peoples R China.
Hunan City Univ, Sch Civil Engn, Yiyang 413000, Hunan, Peoples R China.
Hunan City Univ, Higher Educ Inst Hunan Prov, Key Lab Green Bldg & Intelligent Construct, Yiyang 413000, Hunan, Peoples R China.
语种:
英文
关键词:
rock classification;wavelet scattering transform;support vector machine;sensitivity analysis;deep learning
期刊:
Measurement Science And Technology
ISSN:
0957-0233
年:
2025
卷:
36
期:
4
页码:
046133
基金类别:
National Natural Science Foundation of Chinahttp://dx.doi.org/10.13039/501100001809 [22A0562, 23C0664]; Scientific Research Project of Hunan Provincial Department of Education [202319]; Science and Technology Program of Hunan Provincial Department of Transportation [202211527017]; National Undergraduate Training Program for Innovation and Entrepreneurship of China [52308399]; National Natural Science Foundation of China
机构署名:
本校为第一且通讯机构
院系归属:
土木工程学院
摘要:
In geological exploration and tunnel/underground engineering, precise, rapid, and intelligent rock lithology identification is crucial. A wavelet scattering transform-support vector machine (WST-SVM) rock image classification method is proposed that combines WST with SVM to address the limitations of conventional convolutional neural networks reliant on annotated samples. The method extracts multi-scale features from rock images using WST and trains an SVM classifier, achieving superior performance in test accuracy, macro-average precision, recall, and F1-score on a dataset of six rock types. ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com