版权说明 操作指南
首页 > 成果 > 详情

A new risk evaluation method for supply chain based on convolution neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huanle Han;Lianguang Mo
作者机构:
[Lianguang Mo] College of Management, Hunan City University, Yiyang, 413000, China
[Huanle Han] Department of Tourism Management, Yellow River Conservancy Technical Institute, Kaifeng, 475000, China
语种:
英文
关键词:
convolution neural network;influencing factors;supply chain;risk evaluation;evaluation index.
期刊:
International Journal of Applied Systemic Studies
ISSN:
1751-0589
年:
2024
卷:
11
期:
2
页码:
121-137
机构署名:
本校为第一机构
院系归属:
管理学院
摘要:
In the traditional supply chain risk assessment methods, the significance of selecting evaluation indexes is low, which leads to the problems of low fitting and poor accuracy of risk assessment results. This paper proposes a new convolution neural network method to measuring the risk of supply chain. All risk factors in the supply chain are analysed to clarify the relationship between different factors. The determination of the overall risk assessment index is done by identifying the coordination risk, logistics risk, information risk, and capital risk. The determination of the individual risk...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com