版权说明 操作指南
首页 > 成果 > 详情

A Hybridized Approach for Enhanced Fake Review Detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Xu, Shu;Cuan, Haoqi;Yin, Zhichao;Yin, Chunyong
通讯作者:
Yin, CY
作者机构:
[Xu, Shu] Hunan City Univ, Coll Informat & Elect Engn, Yiyang 413000, Peoples R China.
[Cuan, Haoqi] China Mobile SuZhou Software Technol Co Ltd, Suzhou 215000, Peoples R China.
[Yin, Zhichao] Southeast Univ, Sch Cyber Sci & Engn, Nanjing 2111189, Peoples R China.
[Yin, Chunyong] Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China.
通讯机构:
[Yin, CY ] N
Nanjing Univ Informat Sci & Technol, Sch Comp Sci, Nanjing 210044, Peoples R China.
语种:
英文
关键词:
Reviews;Fake news;Feature extraction;Semantics;Long short term memory;Accuracy;Task analysis;Attention;deceptive review detection;feature representation;long short-term memory (LSTM) network.
期刊:
IEEE Transactions on Computational Social Systems
ISSN:
2329-924X
年:
2024
卷:
11
期:
6
页码:
7448-7466
机构署名:
本校为第一机构
院系归属:
信息与电子工程学院
摘要:
User reviews on online consumption platforms are crucial for both consumers and merchants, serving as a reference for purchase decisions and product improvement. However, fake reviews can mislead consumers and harm merchant profits and reputation. Developing effective methods for detecting deceptive reviews is crucial to protecting the interests of both parties. In recent years, research on fake review detection has focused on improving machine learning and neural network methods to enhance the accuracy of fake review detection, neglecting the fundamental and necessary work of text feature rep...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com