版权说明 操作指南
首页 > 成果 > 详情

A Spectral Clustering Algorithm for Non-Linear Graph Embedding in Information Networks

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Ni, Li;Manman, Peng;Qiang, Wu
通讯作者:
Ni, L
作者机构:
[Ni, Li] Hunan City Univ, Coll Informat & Elect Engn, Yiyang 413000, Peoples R China.
[Qiang, Wu; Manman, Peng] Hunan Univ, Coll Informat & Engineer, Changsha 410008, Peoples R China.
通讯机构:
[Ni, L ] H
Hunan City Univ, Coll Informat & Elect Engn, Yiyang 413000, Peoples R China.
语种:
英文
关键词:
information networks;spectral clustering;deep embedding
期刊:
Applied Sciences-Basel
ISSN:
2076-3417
年:
2024
卷:
14
期:
11
页码:
4946-
基金类别:
National Key R&D Program of China
机构署名:
本校为第一且通讯机构
院系归属:
信息与电子工程学院
摘要:
With the development of network technology, information networks have become one of the most important means for people to understand society. As the scale of information networks expands, the construction of network graphs and high-dimensional feature representation will become major factors affecting the performance of spectral clustering algorithms. To address this issue, in this paper, we propose a spectral clustering algorithm based on similarity graphs and non-linear deep embedding, named SEG_SC. This algorithm introduces a new spectral clustering model that explores the underlying struc...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com