版权说明 操作指南
首页 > 成果 > 详情

Research on the extraction method of painting style features based on convolutional neural network

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jiang, Hua;Yang, Ting
通讯作者:
Yang, Ting(tingyang5@mls.sinanet.com)
作者机构:
[Jiang, Hua] College of Art, Hunan City University, Yiyang
413000, China
[Yang, Ting] Art Design Institute Porcelain College, Hunan Vocational College of Science and Technology, Changsha
410004, China
[Jiang, Hua] 413000, China
通讯机构:
[Yang, T.] A
Art Design Institute Porcelain College, China
语种:
英文
关键词:
CNN;convolution neural network;deep hash coding;feature extraction;paintings;style features
期刊:
International Journal of Arts and Technology
ISSN:
1754-8853
年:
2022
卷:
14
期:
1
页码:
40-55
机构署名:
本校为第一机构
院系归属:
艺术学院
摘要:
In order to overcome the problem of low accuracy in the traditional method for style feature extraction of painting works, this paper proposes a method for style feature extraction of painting works based on convolution neural network. Firstly, the parameters in the digital image of painting works are quantised, and then the feature parameters are fused by fusion technology and used as input information. Then the wind fusion features of painting works are extracted by using the deep hash coding of triple recombination structure in convolutional...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com