版权说明 操作指南
首页 > 成果 > 详情

Compressive Hyperspectral Image Destriping with Spectral Information Preservation

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Yapeng Zhan;Qi Yu;Jiying Liu;Mengjun Zhu;Zhengming Wang;...
作者机构:
[Mengjun Zhu] School of Information and Electronics Engineering, Hunan City University, Yiyang, China
[Yapeng Zhan; Qi Yu; Jiying Liu; Zhengming Wang; Zexi Yang] College of Science National University of Defense Technology, Changsha, China
语种:
英文
关键词:
compressive sampling;hyperspectral image;destriping
年:
2024
页码:
1-5
会议名称:
2024 Light Conference (LCW)
会议论文集名称:
2024 Light Conference (LCW)
会议时间:
17 June 2024
会议地点:
Changchun, China
出版者:
IEEE
ISBN:
979-8-3503-9228-9
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 62101572) 10.13039/501100012166-National Key Research and Development Program of China (Grant Number: 2020YFA0713504)
机构署名:
本校为第一机构
摘要:
Images obtained by compressive push-broom hyperspectral imaging systems may be affected by serious stripe noise, which will significantly reduce the image quality and affect the subsequent image processing. In this paper, we propose a destriping method via matrix decomposition and sparsity constraints for compressive hyperspectral images (CoHSIs). The original noise-free CoHSI is decomposed into a spectral information matrix and a spatial information matrix. The sparsity of spatial information matrix, the smoothness of spectral information matrix and the sparsity of stripe noise are used to re...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com