版权说明 操作指南
首页 > 成果 > 详情

The prediction of karst-collapse susceptibility levels based on the ISSA-ELM integrated model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Jiaxin;Yang, Ying;Yang, Xian;Lu, Yulong;Liu, Yang;...
作者机构:
[Wang, Jiaxin] Department of Natural Resources, China
[Yang, Ying] Department of Discipline Inspection and Supervision,, China
[Yang, Xian; Hu, Da] Hunan Engineering Research Center of Structural Safety and Disaster Prevention for Urban Underground Infrastructure, China
[Lu, Yulong; Liu, Yang] School of Earth Sciences and Spatial Information, China
[Hu, Yongjia] School of Resources and Safety Engineering, China
语种:
英文
关键词:
extreme learning machine;karst collapse;susceptibility prediction;improved sparrow search algorithm;ISSA-ELM integrated model
期刊:
FRONTIERS IN EARTH SCIENCE
ISSN:
2296-6463
年:
2025
卷:
13
页码:
1581090
基金类别:
The author(s) declare that no financial support was received for the research and/or publication of this article.
机构署名:
本校为其他机构
摘要:
Karst collapse, a sudden geological hazard with complex mechanisms and low predictability, presents significant threats to urban safety and sustainable development by jeopardizing human lives and infrastructure. To address the limitations of conventional prediction methods, in this study, we introduce an enhanced predictive model, the improved sparrow search algorithm-optimized extreme learning machine (ISSA-ELM), for accurate karst-collapse susceptibility assessment. The methodology incorporates two key innovations: first, it applies a Singer ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com