版权说明 操作指南
首页 > 成果 > 详情

An information entropy-based method to detect microRNA regulatory module

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yi Yang;Yan Song;Buwen Cao
作者机构:
[Yang Y.; Song Y.] Department of Information Technology, Hunan Women's University, China
[Cao B.] College of Information and Electronic Engineering, Hunan City University, China
语种:
英文
关键词:
Diagnosis;Diseases;Stochastic systems;Tumors;Combination effects;Computational framework;Entropy density;Information entropy;MicroRNAs;Ovarian cancers;Regulatory network;Transcriptional regulatory networks;RNA
期刊:
IPSJ Transactions on Bioinformatics
ISSN:
1882-6679
年:
2019
卷:
12
页码:
1-8
基金类别:
Acknowledgments The research is funded by the “Twelfth Five-year” Education Science Plan Key Project of Hunan province of China (Grant No.XJK014AXX002), the Key Project of the Education Department of Hunan Province (Grant No.17A037) and the Natural Science Foundation of Hunan province, China (Grant No.2018JJ2024).
机构署名:
本校为其他机构
院系归属:
信息与电子工程学院
摘要:
The detection of miRNA regulatory modules (MRMs) can facilitate the analysis of miRNA combination effects in aberrant transcriptional regulatory networks. Existing methods suffer from stochastic or require a predetermined number of regulatory modules. We here develop a parameter-free computational framework named DeMine to predict MRMs. Briefly, DeMine is an information entropy-based method implemented by three steps. It first transforms miRNA regulatory network into a miRNA-miRNA synergistic network, and then detects miRNA clusters by maximizi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com