版权说明 操作指南
首页 > 成果 > 详情

Climate-adaptive energy forecasting in green buildings via attention-enhanced Seq2Seq transfer learning

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Fang;Su, Tao;Zeng, Qing;Han, Xiaojuan
通讯作者:
Su, T
作者机构:
[Han, Xiaojuan; Peng, Fang; Zeng, Qing] Hunan City Univ, Coll Architecture & Urban Planning, Yiyang, Hunan, Peoples R China.
[Su, Tao] Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Guangdong, Peoples R China.
通讯机构:
[Su, T ] S
Sun Yat Sen Univ, Sch Elect & Informat Technol, Guangzhou, Guangdong, Peoples R China.
语种:
英文
期刊:
Scientific Reports
ISSN:
2045-2322
年:
2025
卷:
15
期:
1
页码:
31829
基金类别:
General Topic of Hunan Social Science Achievement Review Committee in 2024 [XSP24YBC500]; Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province [2018TP1042]
机构署名:
本校为第一机构
院系归属:
建筑与城市规划学院
摘要:
Energy consumption forecasting in green buildings remains challenging due to complex climate-building interactions and temporal dependencies in energy usage patterns. Existing prediction models often fail to capture long-term dependencies and adapt to diverse climatic conditions, limiting their practical applicability. This study presents an integrated forecasting framework that combines sequence-to-sequence (Seq2Seq) architecture with reinforcement learning and transfer learning techniques. The framework employs long short-term memory (LSTM) networks enhanced with attention mechanisms to mode...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com