版权说明 操作指南
首页 > 成果 > 详情

Climate-adaptive energy forecasting in green buildings via attention-enhanced Seq2Seq transfer learning.

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Peng, Fang;Su, Tao*;Zeng, Qing;Han, Xiaojuan
通讯作者:
Su, Tao
作者机构:
[Han, Xiaojuan; Peng, Fang; Zeng, Qing] College of Architecture and Urban Planning, Hunan City University, Yiyang, Hunan, China
[Su, Tao] School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China. sutao@mail.sysu.edu.cn
通讯机构:
[Su, Tao] S
School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou, Guangdong, China.
语种:
英文
期刊:
Scientific Reports
ISSN:
2045-2322
年:
2025
卷:
15
期:
1
页码:
31829
机构署名:
本校为第一机构
院系归属:
建筑与城市规划学院
摘要:
Energy consumption forecasting in green buildings remains challenging due to complex climate-building interactions and temporal dependencies in energy usage patterns. Existing prediction models often fail to capture long-term dependencies and adapt to diverse climatic conditions, limiting their practical applicability. This study presents an integrated forecasting framework that combines sequence-to-sequence (Seq2Seq) architecture with reinforcement learning and transfer learning techniques. The framework employs long short-term memory (LSTM) networks enhanced with attention mechanisms to mode...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com