版权说明 操作指南
首页 > 成果 > 详情

Generative Adversarial Network for Adaptive Piano Accompaniment

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Dan Zhou;Sun Nataliia*
通讯作者:
Sun Nataliia
作者机构:
[Dan Zhou; Sun Nataliia] School of Music and Dance, Hunan City University, Yiyang, 413000, China
通讯机构:
[Sun Nataliia] S
School of Music and Dance, Hunan City University, Yiyang, 413000, China
语种:
英文
关键词:
Adaptation;Piano Accompaniment;Generative Adversarial Networks;Artificial Intelligence
期刊:
Systems and Soft Computing
ISSN:
2772-9419
年:
2025
页码:
200289
机构署名:
本校为第一且通讯机构
摘要:
With the development of artificial intelligence, there has been a wave of innovation in the field of music creation and performance. In this paper, we propose a novel generative adversarial network architecture, which can generate adaptive piano accompaniment in real time. In the network, the generator generates piano accompaniment based on the input melody, and the discriminator evaluates the quality difference between the generated accompaniment and the professional accompaniment, and improves the quality of the accompaniment through the adversarial learning mechanism. The network design foc...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com