版权说明 操作指南
首页 > 成果 > 详情

Transfer Learning for Semi-supervised Classification of Non-stationary Data Streams

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
会议论文
作者:
Wen Y.;Zhou Q.;Xue Y.;Feng C.
通讯作者:
Wen, Y.
作者机构:
[Wen Y.; Feng C.; Zhou Q.] Guangxi Key Laboratory of Image and Graphic Intelligent Processing, Guilin University of Electronic Technology, Guilin, China
[Xue Y.] School of Municipal and Surveying Engineering, Hunan City University, Yiyang, China
通讯机构:
[Wen, Y.] G
Guangxi Key Laboratory of Image and Graphic Intelligent Processing, China
语种:
英文
关键词:
Concept drift;Semi-supervised learning;Transfer learning
期刊:
Communications in Computer and Information Science
ISSN:
1865-0929
年:
2020
卷:
1333
页码:
468-477
会议名称:
27th International Conference on Neural Information Processing, ICONIP 2020
会议时间:
18 November 2020 through 22 November 2020
主编:
Yang H.Pasupa K.Leung A.C.Kwok J.T.Chan J.H.King I.
出版者:
Springer Science and Business Media Deutschland GmbH
ISBN:
9783030638221
基金类别:
Acknowledgments. This work was partially supported by the National Natural Science Foundation of China (61866007, 61662014), Natural Science Foundation of Guangxi District (2018GXNSFDA138006), and Image Intelligent Processing Project of Key Laboratory Fund (GIIP2005).
机构署名:
本校为其他机构
院系归属:
市政与测绘工程学院
摘要:
In the scenario of data stream classification, the occurrence of recurring concept drift and the scarcity of labeled data are very common, which make the semi-supervised classification of data streams quite challenging. To deal with these issues, a new classification algorithm for partially labeled streaming data with recurring concept drift is proposed. CAPLRD maintains a pool of concept-specific classifiers and utilizes historical classifiers to label unlabeled data, in which the unlabeled data are labeled by a weighted-majority vote strategy...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com