版权说明 操作指南
首页 > 成果 > 详情

Towards sustainable architecture: Enhancing green building energy consumption prediction with integrated variational autoencoders and self-attentive gated recurrent units from multifaceted datasets

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zeng, Qing;Peng, Fang;Han, Xiaojuan
通讯作者:
Zeng, Q
作者机构:
[Zeng, Q; Han, Xiaojuan; Peng, Fang; Zeng, Qing] Hunan City Univ, Coll Architecture & Urban Planning, Yiyang, Peoples R China.
通讯机构:
[Zeng, Q ] H
Hunan City Univ, Coll Architecture & Urban Planning, Yiyang, Peoples R China.
语种:
英文
期刊:
PLOS ONE
ISSN:
1932-6203
年:
2025
卷:
20
期:
4
页码:
e0317514
基金类别:
Key Laboratory of Key Technologies of Digital Urban-Rural Spatial Planning of Hunan Province [2018TP1042]
机构署名:
本校为第一且通讯机构
院系归属:
建筑与城市规划学院
摘要:
Global awareness of sustainable development has heightened interest in green buildings as a key strategy for reducing energy consumption and carbon emissions. Accurate prediction of energy consumption plays a vital role in developing effective energy management and conservation strategies. This study addresses these challenges by proposing an advanced deep learning framework that integrates Time-Dependent Variational Autoencoder (TD-VAE) with Adaptive Gated Self-Attention GRU (AGSA-GRU). The framework incorporates self-attention mechanisms and Multi-Task Learning (MTL) strategies to capture lo...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com