版权说明 帮助中心
首页 > 成果 > 详情

New exact solutions to the perturbed nonlinear Schrodinger’s equation with Kerr law nonlinearity via modified trigonometric function series method

SCI-EEICSCD
WOS被引频次:38
认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Zhang Zaiyun;Li Yunxiang;Liu Zhenhai;Miao Xiujin
通讯作者:
Zhang, Z.-Y.(zhangzaiyun1226@126.com)
作者机构:
[Li Yunxiang] Department of Mathematics, Hunan City University, Yiyang, Hunan 413000, China
[Zhang Zaiyun; Miao Xiujin] School of Mathematical Sciences and Computing Technology, Central South University, Changsha, Hunan 410075, China
[Liu Zhenhai] School of Mathematics and Computer Science, Guangxi University for Nationalities, Nanning, 530006 Guangxi, China
通讯机构:
[Zhang, ZY] Cent S Univ, Sch Math Sci & Comp Technol, Changsha 410075, Hunan, Peoples R China.
语种:
英文
关键词:
Exact solutions;NLSE with Kerr law nonlinearity;Modified trigonometric function series method (MTFSM)
期刊:
Communications in Nonlinear Science & Numerical Simulation
ISSN:
1007-5704
年:
2011
卷:
16
期:
8
页码:
3097-3106
文献类别:
WOS:Article;EI:Journal article (JA)
所属学科:
ESI学科类别:物理学;WOS学科类别:Mathematics, Applied;Mathematics, Interdisciplinary Applications;Mechanics;Physics, Fluids & Plasmas;Physics, Mathematical
入藏号:
WOS:000289601700017;EI:20111113751926
基金类别:
Graduate Degree Thesis Innovation Foundation of Central South University (PR China) [CX2010B115]; Central South University (PR China) [2010ybfz016]; NSF of Guangxi (PR China) [2010 GXNSFA 013114]
机构署名:
本校为其他机构
院系归属:
理学院
摘要:
In this paper, the modified trigonometric function series method is employed to solve the perturbed nonlinear Schrodinger’s equation (NLSE) with Kerr law nonlinearity. Exact traveling wave solutions are obtained.
参考文献:
Bekir A, 2008, PHYS LETT A, V372, P3400, DOI 10.1016/j.physleta.2008.01.057
Biswas A, 2003, OPT FIBER TECHNOL, V9, P224, DOI 10.1016/S1068-5200(03)00044-0
Biswas A, 2001, CHAOS SOLITON FRACT, V12, P579, DOI 10.1016/S0960-0779(00)00006-0
Biswas A, 2003, OPT COMMUN, V216, P427, DOI 10.1016/S0030-4018(02)02309-X
Biswas A, 2002, CHAOS SOLITON FRACT, V13, P815, DOI 10.1016/S0960-0779(01)00057-1

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com