Photovoltaic (PV) output is susceptible to meteorological factors, resulting in intermittency and randomness of power generation. Accurate prediction of PV power output can not only reduce the impact of PV power generation on the grid but also provide a reference for grid dispatching. Therefore, this paper proposes an LSTM-attention-embedding model based on Bayesian optimization to predict the day-ahead PV power output. The statistical features at multiple time scales, combined features, time features and wind speed categorical features are exp...