版权说明 操作指南
首页 > 成果 > 详情

Predicting Outdoor Thermal Comfort in Traditional Villages: An Explainable Machine Learning Framework Integrating Model Optimization, Seasonal Variability, and Tourist-Resident Insights

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Jiang, Jishui;Li, Zhe;Bedra, Komi Bernard;Long, Canrong;Wu, Jiade;...
通讯作者:
Li, Z
作者机构:
[Bedra, Komi Bernard; Jiang, Jishui] Hunan City Univ, Sch Architecture & Urban Planning, Yiyang 413000, Peoples R China.
[Li, Zhe; Li, Z; Zhong, Qikang; Jiang, Jishui; Wu, Jiade] Cent South Univ, Sch Architecture & Art, Changsha 410075, Peoples R China.
[Li, Zhe; Zhong, Qikang; Jiang, Jishui; Wu, Jiade] Hunan Prov Key Lab Low Carbon Hlth Bldg, Changsha 410075, Peoples R China.
[Bedra, Komi Bernard] Key Lab Key Technol Digital Urban Rural Spatial Pl, Yiyang, Peoples R China.
[Long, Canrong] Zhejiang Univ Univ Edinburgh Inst, Haining 314400, Peoples R China.
通讯机构:
[Li, Z ] C
Cent South Univ, Sch Architecture & Art, Changsha 410075, Peoples R China.
语种:
英文
关键词:
Outdoor thermal comfort;Machine learning;Traditional village;Bayesian optimization;Shapley additive explanations
期刊:
Building and Environment
ISSN:
0360-1323
年:
2025
卷:
282
页码:
113315
基金类别:
CRediT authorship contribution statement Jishui Jiang: Writing – review & editing, Writing – original draft, Investigation, Formal analysis, Data curation, Conceptualization. Zhe Li: Supervision, Resources, Project administration, acquisition. Komi Bernard Bedra: Writing – review & editing, Visualization, Validation, Software. Canrong Long: Visualization, Software, Methodology. Jiade Wu: Visualization, Validation, Investigation. Qikang Zhong: Validation, Supervision, Investigation.
机构署名:
本校为第一机构
院系归属:
建筑与城市规划学院
摘要:
This study developed explainable machine learning (ML) models to enhance outdoor thermal comfort (OTC) prediction in traditional villages, aiming to improve resident health and rural tourism. A village-specific OTC dataset was established through field experiments, and eight ML algorithms were utilized to predict thermal sensation (TSV), comfort (TCV), and acceptance (TAV) votes, with performance compared to empirical and mechanism models. Feature engineering, data resampling, and hyperparameter optimization were applied to optimize ML models, while the Shapley Additive exPlanations (SHAP) fra...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com