版权说明 帮助中心
首页 > 成果 > 详情

Conformal invariance and conserved quantity of Mei symmetry for higher-order nonholonomic system

SCI-EEI
WOS被引频次:15
认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Wei-Li;Cai, Jian-Le*
通讯作者:
Cai, Jian-Le
作者机构:
[Huang, Wei-Li] Hunan City Univ, Dept Phys & Telecom Engn, Yiyang 413000, Peoples R China.
[Cai, Jian-Le] Hangzhou Normal Univ, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China.
通讯机构:
[Cai, Jian-Le] Hangzhou Normal Univ, Coll Sci, Hangzhou 310018, Zhejiang, Peoples R China.
语种:
英文
期刊:
Acta Mechanica
ISSN:
0001-5970
年:
2012
卷:
223
期:
2
页码:
433-440
文献类别:
WOS:Article;EI:Journal article (JA)
所属学科:
ESI学科类别:工程学;WOS学科类别:Mechanics
入藏号:
WOS:000299514100014;EI:20121314895109
基金类别:
National Natural Science Foundation of China [10932002]
机构署名:
本校为第一机构
院系归属:
信息与电子工程学院
摘要:
The conformal invariance and conserved quantity of Mei symmetry for a higher-order nonholonomic mechanical system are presented. Introducing an infinitesimal transformation group and infinitesimal generator vector, the definition of conformal invariance of Mei symmetry and the determining equation for the holonomic system which corresponds to a higher-order nonholonomic system are provided, and the relationship between Mei symmetry and conformal invariance of the system is discussed. The basis of restriction equations and additional restriction equations, the conformal invariance of weak and strong Mei symmetry for the higher-order nonholonomic mechanical system is constructed.With the aid of a structure equation that the gauge function satisfies, the system's corresponding conserved quantity is derived. Finally, an example is given to illustrate the application of the method and its result. ©Springer-Verlag 2011.
参考文献:
Hertz H.R.: Die Prinzipien der Mechanik. Gesammelte Werke, Leipzig (1894)
Li Z.P.: The transformation properties of constrained system. Acta Phys. Sin. , 1659–1671 (1981)
Li Z.P.: Classical and Quantal Dynamics of Constrained Systems and Their Symmetrical Properties. Beijing Polytechnic University Press, Beijing (1993)
Pang T., Fang J.H., Zhang M.J., Lin P., Lu K.: A new type of conserved quantity deduced from Mei symmetry of nonholonomic systems in terms of quasi-coordinates. Chin. Phys. B , 3150–3154 (2009)
Li Z.P., Jiang J.H.: Symmetries in Constrained Canonical Systems. Science Press, Beijing (2002)

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com