版权说明 操作指南
首页 > 成果 > 详情

Shear strength parameters prediction of rock materials using hybrid machine learning model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cheng, Yanhui;He, Dongliang;Liu, Hongwei;Wang, Guoxian
通讯作者:
Liu, HW
作者机构:
[He, Dongliang; Cheng, Yanhui] Hunan City Univ, Sch Civil Engn, Yiyang, Hunan, Peoples R China.
[Liu, Hongwei] Cent South Univ, Sch Resources & Safety Engn, Changsha, Hunan, Peoples R China.
[Wang, Guoxian] Yunnan Agr Univ, Coll Architecture & Engn, Kunming, Yunnan, Peoples R China.
通讯机构:
[Liu, HW ] C
Cent South Univ, Sch Resources & Safety Engn, Changsha, Hunan, Peoples R China.
语种:
英文
关键词:
Rock materials;shear strength parameters;internal friction angle;cohesion;machine learning;artificial neural network
期刊:
Nondestructive Testing and Evaluation
ISSN:
1058-9759
年:
2024
基金类别:
Key Project of Hunan Provincial Department of Education [22A0566]
机构署名:
本校为第一机构
院系归属:
土木工程学院
摘要:
Cohesion and internal friction angle are critical parameters for evaluating the suitability of stone. To build a reliable model to predict the cohesion and internal friction angle of rock, dataset containing 597 rock samples were collected and their petrological characteristics were investigated. In this study, artificial neural network (ANN) and particle swarm optimisation (PSO) algorithm are hybridised to establish a new hybrid machine learning (ML) model for predicting cohesion and internal friction angle based on petrological features. By comparing other five ML models, the efficiency of t...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com