版权说明 操作指南
首页 > 成果 > 详情

DAEAR-DETR: DETR With Dual-Attention and Echo Accumulative Residual for Bus Passenger Detection

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hou, Jie;Liu, Hongli;Xiao, Weichu;Liu, Jianwei
通讯作者:
Liu, HL
作者机构:
[Xiao, Weichu; Liu, Hongli; Hou, Jie] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China.
[Hou, Jie] Hunan City Univ, Coll Teacher Educ, Yiyang 413000, Peoples R China.
[Liu, Jianwei] Changsha Univ, Coll Elect Informat & Elect Engn, Changsha 410022, Peoples R China.
通讯机构:
[Liu, HL ] H
Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China.
语种:
英文
关键词:
Feature extraction;Ear;Accuracy;Transformers;Real-time systems;Degradation;YOLO;Transforms;Safety;Robustness;Bus passenger detection;dual-attention;echo accumulative residual;gated mechanism
期刊:
IEEE Transactions on Intelligent Transportation Systems
ISSN:
1524-9050
年:
2025
基金类别:
National Natural Science Foundation of China [62173133]; National Natural Science Foundation of China-Reginal Innovation and Development Joint Key Project [U21A20518]
机构署名:
本校为其他机构
摘要:
Effective detection of bus passengers enhances the intelligence and automation of public transportation systems, but it is challenged by complex backgrounds and severe scale imbalances. To address these challenges, we introduce DAEAR-DETR, a novel neural network architecture employing Dual-Attention mechanisms and Echo Accumulative Residuals (EAR) for bus passenger detection. This model features a Dual-Attention Encoder comprising the Low-Level Local Attention Module (LLLAM) and the High-Level Global Attention Module (HLGAM). Additionally, it integrates a Bidirectional Cross-scale Feature-Fusi...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com