版权说明 操作指南
首页 > 成果 > 详情

Predicting Ultra-Short-Term Wind Power Combinations Under Extreme Weather Conditions

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Wanting;Yang, Tongguang;Yang, Jingyu;Peng, Li
通讯作者:
Li, WT
作者机构:
[Li, Wanting; Yang, Jingyu; Peng, Li; Yang, Tongguang] Hunan City Univ, Key Lab Smart City Energy Sensing & Edge Comp Huna, Yiyang 413000, Peoples R China.
通讯机构:
[Li, WT ] H
Hunan City Univ, Key Lab Smart City Energy Sensing & Edge Comp Huna, Yiyang 413000, Peoples R China.
语种:
英文
关键词:
Meteorology;Wind power generation;Predictive models;Accuracy;Wind turbines;Wind forecasting;Wind speed;Rain;Fluctuations;Atmospheric modeling;Deep learning;extreme weather;Kernel density estimation;time GAN;wind power prediction
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2025
卷:
13
页码:
26575-26588
基金类别:
10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 52377181) Excellent Youth Program of Hunan Provincial Department of Education (Grant Number: 23B0745) Hunan Provincial Natural Science Foundation Project (Grant Number: 2024JJ7088) Project of Natural Science Foundation of Hunan Province (Grant Number: 2023JJ50344)
机构署名:
本校为第一且通讯机构
摘要:
The prediction of wind power generation is an important basis for the rational scheduling of new energy sources in wind power. However, the severe fluctuations in wind power output under extreme weather conditions pose a serious challenge for ultra-short-term wind power output prediction. A combination forecasting method for ultra-short-term wind power that comprehensively considers extreme weather and normal weather is proposed to address the above issues. To explore the differences in power time series characteristics under different scenarios in terms of the relationships between wind power...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com