版权说明 操作指南
首页 > 成果 > 详情

An improved sparse representation model for robust image denoising

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Cui, Zhi*;Cui, Xianpu
通讯作者:
Cui, Zhi
作者机构:
[Cui, Zhi; Cui, Xianpu] Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Peoples R China.
通讯机构:
[Cui, Zhi] H
Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Peoples R China.
语种:
英文
期刊:
Chemical Engineering Transactions
ISSN:
2283-9216
年:
2015
卷:
46
页码:
175-180
会议名称:
International Conference on Applied Engineering and Management
会议论文集名称:
Chemical Engineering Transactions
会议时间:
SEP 11-14, 2015
会议地点:
Beijing, PEOPLES R CHINA
会议主办单位:
[Cui, Zhi;Cui, Xianpu] Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Peoples R China.
主编:
Ren, P Li, Y Song, H
出版地:
VIA GIUSEPPE COLOMBO 81/A, MILANO, MI 20133, ITALY
出版者:
AIDIC SERVIZI SRL
ISBN:
978-88-95608-37-2
机构署名:
本校为第一且通讯机构
院系归属:
信息与电子工程学院
摘要:
Though the sparse representation has demonstrated to be a very effective tool to de-noise the images with low levels of noise, it usually losses the power to well preserve structural features in images with high levels of noise. In this paper, we propose an improved de-noising method for images with low signal- to noise ratio. Specifically, the proposed method takes the histogram structural similarity (HSSIM) as similarity factor to replace the reconstruction error as the new fidelity term, and finds the most appropriate sparse coefficients by using the modified orthogonal matching pursuit (OM...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com