版权说明 操作指南
首页 > 成果 > 详情

An Improved Sparse Representation De-noising for Keeping Structural Features

认领
导出
Link by 万方会议论文
反馈
分享
QQ微信 微博
成果类型:
期刊论文、会议论文
作者:
Cui, Zhi*
通讯作者:
Cui, Zhi
作者机构:
[Cui, Zhi] Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Hunan, Peoples R China.
通讯机构:
[Cui, Zhi] H
Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Hunan, Peoples R China.
语种:
英文
关键词:
Structural feature;Similarity factor;Sparse representation;Image de-noising
期刊:
Communications in Computer and Information Science
ISSN:
1865-0929
年:
2014
卷:
483
页码:
253-262
会议名称:
Chinese Conference on Pattern Recognition, CCPR(2014年全国模式识别学术会议)
会议论文集名称:
Chinese Conference on Pattern Recognition, CCPR(2014年全国模式识别学术会议)论文集
会议时间:
2014-11-01
会议地点:
长沙
会议主办单位:
[Cui, Zhi] Hunan City Univ, Sch Commun & Elect Engn, Yiyang 413000, Hunan, Peoples R China.
会议赞助商:
湖南大学
主编:
Li, S Liu, C Wang, Y
出版地:
HEIDELBERGER PLATZ 3, D-14197 BERLIN, GERMANY
出版者:
SPRINGER-VERLAG BERLIN
ISBN:
978-3-662-45646-0; 978-3-662-45645-3
机构署名:
本校为第一且通讯机构
院系归属:
信息与电子工程学院
摘要:
Considering the current image de-noising methods may lose some structural features, this paper proposes an improved sparse representation based method by adopting the histogram structural similarity. When the initial over-complete dictionary was applied in the sparse decomposition, similarity factor could replace the reconstruction error as the factor of fidelity. The orthogonal matching pursuit algorithm(OMP) is used to reconstruct the denoised image. The experimental results show that the proposed method could provide better PSNR and HSSIM results compared with the wavelet transformation, th...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com