版权说明 操作指南
首页 > 成果 > 详情

Unlearning Recently Learned Data to Preserve Historical Learning for Dynamic Data Stream Classification

认领
导出
Link by 中国知网学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wen, Yimin;Zhou, Xingzhi;Liu, Xiang;Xue, Yun;Bin, Chenzhong
通讯作者:
Wen, YM
作者机构:
[Liu, Xiang; Wen, Yimin; Zhou, Xingzhi] Guilin Univ Elect Technol, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541004, Peoples R China.
[Bin, Chenzhong] Guilin Univ Elect Technol, Guangxi Key Lab Trusted Software, Guilin 541004, Peoples R China.
[Xue, Yun] Hunan City Univ, Sch Municipal & Surveying Engn, Yiyang 413000, Peoples R China.
通讯机构:
[Wen, YM ] G
Guilin Univ Elect Technol, Guangxi Key Lab Image & Graph Intelligent Proc, Guilin 541004, Peoples R China.
语种:
英文
关键词:
Concept drift;Data stream;Machine unlearning;Machine unlearning;Concept drift;Machine unlearning;Online learning;Online learning
期刊:
电子学报(英文)
ISSN:
1022-4653
年:
2025
卷:
34
期:
3
页码:
849-860
基金类别:
Natural Science Foundation of Guangxi District [2024GXNSFDA010066]; Key R&D Program of Guangxi [AB21220023]; National Natural Science Foundation of China [62366011]; Guangxi Key Laboratory of Image and Graphic Intelligent Processing [GIIP2306]
机构署名:
本校为其他机构
院系归属:
市政与测绘工程学院
摘要:
At present, dynamic data stream classification has achieved many successful results through concept drift detection and ensemble learning. However, generally, due to delay in concept drift detection, the active classifier may further learn data belonging to a new concept. This will ultimately degrade the generalization capability of this active classifier on its corresponding concept. Thus, how can a classifier corresponding to one concept unlearns the learned data belonging to another concept? Two unlearning algorithms are proposed to address this problem. The first one based on the passive-a...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com