版权说明 操作指南
首页 > 成果 > 详情

Deformation Prediction of Dam Based on Optimized Grey Verhulst Model

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Huang, Changjun;Zhou, Lv;Liu, Fenliang;Cao, Yuanzhi;Liu, Zhong;...
通讯作者:
Changjun Huang
作者机构:
[Xue, Yun; Huang, Changjun; Cao, Yuanzhi; Liu, Fenliang] Hunan City Univ, Sch Municipal & Surveying Engn, Yiyang 413000, Peoples R China.
[Zhou, Lv] Guilin Univ Technol, Sch Geomat & Geoinformat, Guilin 541004, Peoples R China.
[Liu, Zhong] Hunan Remote Sensing Geol Survey & Monitoring Inst, Changsha 411000, Peoples R China.
通讯机构:
[Changjun Huang] S
School of Municipal and Surveying Engineering, Hunan City University, Yiyang 413000, China<&wdkj&>Author to whom correspondence should be addressed.
语种:
英文
关键词:
Grey Verhulst model;no-saturated;deformation prediction;precision evaluation
期刊:
Mathematics
ISSN:
2227-7390
年:
2023
卷:
11
期:
7
页码:
1729-
基金类别:
The present work was supported by natural science foundation of Hunan province of China (Grant No. 2021JJ30076, 2022JJ50261) and foundation of Hunan educational committee (Grant No. 21A0502).
机构署名:
本校为第一机构
院系归属:
市政与测绘工程学院
摘要:
Dam deformation monitoring data are generally characterized by non-smooth and no-saturated S-type fluctuation. The grey Verhulst model can get better results only when the data series is non-monotonic swing development and the saturated S-shaped sequence. Due to the limitations of the grey Verhulst model, the prediction accuracy will be limited to a certain extent. Aiming at the shortages in the prediction based on the traditional Verhulst model, the optimized grey Verhulst model is proposed to improve the prediction accuracy of the dam deforma...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com