版权说明 操作指南
首页 > 成果 > 详情

INEQUALITIES FOR GENERALIZED TRIGONOMETRIC AND HYPERBOLIC FUNCTIONS WITH ONE PARAMETER

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Wang, Miao-Kun;Hong, Miao-Ying;Xu, Yang-Fan;Shen, Zhong-Hua;Chu, Yu-Ming*
通讯作者:
Chu, Yu-Ming
作者机构:
[Wang, Miao-Kun; Hong, Miao-Ying; Xu, Yang-Fan] Huzhou Univ, Dept Math, Huzhou 313000, Peoples R China.
[Shen, Zhong-Hua] Hangzhou Normal Univ, Dept Math, Hangzhou 311121, Peoples R China.
[Chu, Yu-Ming] Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China.
[Chu, Yu-Ming] Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China.
通讯机构:
[Chu, Yu-Ming] H
[Chu, Yu-Ming] C
Hunan City Univ, Coll Sci, Yiyang 413000, Peoples R China.
Changsha Univ Sci & Technol, Sch Math & Stat, Changsha 410114, Peoples R China.
语种:
英文
关键词:
Generalized trigonometric function;generalized hyperbolic function;Gamma function;Mitrinovic-Adamovic inequality;Lazarevic inequality;Huygens-type inequality;Wilker-type inequality;Cusa-Huygens-type inequality
期刊:
JOURNAL OF MATHEMATICAL INEQUALITIES
ISSN:
1846-579X
年:
2020
卷:
14
期:
1
页码:
1-21
基金类别:
Case 3 p ∈ [3,+∞). Then Lemma 2.7(5) shows that g′(x) < 0 for all x ∈ (0,mp∗). This together with equations (3.18)-(3.22) leads to the conclusion that f (x) < 0 for all x ∈ (0,mp∗), namely, inequality (3.16) holds for all x ∈ (0,mp∗) and p ∈ [3,+∞). □ Acknowledgements. The research was supported by the Natural Science Foundation of China (Grant Nos. 11701176, 61673169, 11301127, 11626101, 11601485), the Natural Science Foundation of Zhejiang Province (Grant No. LQY18G030001) and the research project for college students of Huzhou University (Grant No. 2019-111).
机构署名:
本校为通讯机构
院系归属:
理学院
摘要:
In the article, we establish several new inequalities for the generalized trigonometric and hyperbolic functions with one parameter, generalize the well known Mitrinović-Adamović, Lazarević, Huygens-type, Wilker-type and Cusa-Huygens-type inequalities to the cases of the generalized trigonometric and hyperbolic functions...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com