版权说明 操作指南
首页 > 成果 > 详情

Data-Driven Deep-Learning Model for Predicting Jacking Force of Rectangular Pipe Jacking Tunnel

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Li, Yongsuo;Weng, Xiaoxuan;Hu, Da;Tan, Ze;Qi, Kai;...
通讯作者:
Hu, D
作者机构:
[Hu, Da; Li, Yongsuo; Hu, D] Hunan City Univ, Hunan Engn Res Ctr Struct Safety & Disaster Preven, 518 Yingbin East Rd, Yiyang 413000, Peoples R China.
[Weng, Xiaoxuan; Tan, Ze; Liu, Jing] Hunan City Univ, Coll Civil Engn, Yingbin East Rd, Yiyang 413000, Hunan, Peoples R China.
[Qi, Kai] Univ South China, Coll Civil Engn, Henyang 421001, Hunan, Peoples R China.
通讯机构:
[Hu, D ] H
Hunan City Univ, Hunan Engn Res Ctr Struct Safety & Disaster Preven, 518 Yingbin East Rd, Yiyang 413000, Peoples R China.
语种:
英文
关键词:
Prediction of jacking force;Pipe jacking tunnel;Deep-learning;Convolutional neural network;Long-term and short-term memory network
期刊:
JOURNAL OF COMPUTING IN CIVIL ENGINEERING
ISSN:
0887-3801
年:
2025
卷:
39
期:
3
页码:
04025017
基金类别:
National Natural Science Foundation of China [51678226]; Natural Science Foundation of Hunan Province [2023JJ30110]; Key Scientific Research Project of Hunan Provincial Department of Education [23A0568]
机构署名:
本校为第一且通讯机构
院系归属:
土木工程学院
摘要:
The advancement of computer technology has led to the increased utilization of new algorithms, such as machine learning, in various fields including underground engineering. The estimation of jacking force plays a critical role in the construction of rectangular jacked tunnels. Conventional prediction techniques often rely on empirical models and statistical analysis, posing challenges in accurately forecasting the jacking force for intricate tunnel structures. To overcome this obstacle, a method for predicting tunnel jacking force is proposed, which integrates a convolutional neural network (...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com