版权说明 操作指南
首页 > 成果 > 详情

Identification of the Shaft-Rate Electromagnetic Field Induced by a Moving Ship Using Improved Learning-Based and Spectral-Direction Methods

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Hu, Shuanggui;Zhang, Liang;Tang, Jingtian;Li, Guang;Yang, Haiyan;...
通讯作者:
Zhang, L;Tang, JT
作者机构:
[Xiang, Jingnian; Yang, Haiyan; Hu, Shuanggui] China Univ Min & Technol, Sch Resources & Geosci, Xuzhou 221008, Peoples R China.
[Zhang, Liang; Zhang, L] Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China.
[Tang, Jingtian] Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China.
[Li, Guang] East China Univ Technol, Nanchang Key Lab Intelligent Sensing Technol & Ins, Nanchang 330013, Peoples R China.
[Xu, Zhenhuan] Taiyuan Univ Technol, Coll Comp Sci & Technol, Taiyuan 030600, Peoples R China.
通讯机构:
[Zhang, L ] G
[Tang, JT ] C
Guizhou Univ, Key Lab Adv Mfg Technol, Minist Educ, Guiyang 550025, Peoples R China.
Cent South Univ, Sch Geosci & Infophys, Changsha 410083, Peoples R China.
语种:
英文
关键词:
Deep residual network (ResNet);shaft-rate electromagnetic field;signal identification;spectral-direction analysis;variational modal decomposition;Deep residual network (ResNet);shaft-rate electromagnetic field;signal identification;spectral-direction analysis;variational modal decomposition
期刊:
IEEE Transactions on Geoscience and Remote Sensing
ISSN:
0196-2892
年:
2024
卷:
62
页码:
1-11
基金类别:
National Key Research and Development Program of China (Grant Number: 2023YFC3008901 and 2023YFF0718000) 10.13039/501100001809-National Natural Science Foundation of China (Grant Number: 42230811) 10.13039/501100004761-Natural Science Foundation of Hainan Province (Grant Number: 2021JJ40024) Guizhou University Basic Research Project (Grant Number: [2023]44) Xuzhou Key Research and Development Plan (Grant Number: KC20052) Basic Applied Research and Soft Science Research Plan of Yiyang (Yi Caijiao Zhi [2022]108)
机构署名:
本校为其他机构
院系归属:
信息与电子工程学院
摘要:
The use of the shaft-rate electromagnetic fields generated by moving ships for detection and sensing purposes has several advantages, including effective target recognition and excellent concealment. It offers a solution to the challenges faced in detecting underwater targets. In this study, we propose a method to identify and analyze the shaft-rate electromagnetic field signals using an improved deep learning algorithm and a spectral-direction analysis technique. Initially, we apply variational mode decomposition (VMD) to identify the multifrequency characteristics of both synthesized and rea...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com