版权说明 操作指南
首页 > 成果 > 详情

Sparsity based denoising of PET-CT images

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Cui, Zhi;Cui, Xian-Pu
通讯作者:
Cui, Zhi(zhicui@yeah.net)
作者机构:
[Cui, Zhi; Cui, Xian-Pu] Schoolof Communication and Electronic Engineering, Hunan City University, China
通讯机构:
Schoolof Communication and Electronic Engineering, Hunan City University, China
语种:
英文
关键词:
Computerized tomography;Image processing;Image reconstruction;Optimization;White noise;Atom substitution;Denoising methods;Detail compensations;K-svd algorithms;Optimization problems;Over-complete dictionaries;Sparse representation;Structural similarity;Image denoising
期刊:
International Journal of Multimedia and Ubiquitous Engineering
ISSN:
1975-0080
年:
2016
卷:
11
期:
2
页码:
371-380
机构署名:
本校为第一且通讯机构
院系归属:
信息与电子工程学院
摘要:
In this paper, we propose an improved method for the removal of additive Gussian white noise from PET-CT images. Different from the traditional sparse representation based denoising methods, our method is composed of two distinctively steps such as the preliminary denoise and the detail compensation. By constructing a sparse representation model, denoising is formulated as an optimization problem that can be solved on an over-complete dictionary. The proposed method effectively trains this dictionary by using K-SVD algorithm with atom replace m...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com