版权说明 操作指南
首页 > 成果 > 详情

Tensor-Train Fuzzy Deep Computation Model for Citywide Traffic Flow Prediction

认领
导出
Link by DOI
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Chen, Weihong;An, Jiyao*;Li, Renfa;Xie, Guoqi
通讯作者:
An, Jiyao
作者机构:
[Xie, Guoqi; An, Jiyao; Li, Renfa; Chen, Weihong] Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China.
[Chen, Weihong] Hunan City Univ, Coll Informat & Elect Engn, Yiyang 413000, Peoples R China.
通讯机构:
[An, Jiyao] H
Hunan Univ, Coll Comp Sci & Elect Engn, Changsha 410082, Hunan, Peoples R China.
语种:
英文
关键词:
Fuzzy deep computation;prediction;tensor;tucker decomposition
期刊:
IEEE ACCESS
ISSN:
2169-3536
年:
2019
卷:
7
页码:
120581-120593
基金类别:
This work was supported in part by the National Key Research and Development Plan of China under Grant 2016YFB0200405, in part by the National Natural Science Foundation of China under Grant 61672217, Grant 61370097, and Grant 61602164, in part by the Natural Science Foundation of Hunan Province, China, under Grant 2018JJ2063, Grant 2018JJ3076, and Grant 2018JJ3023, and in part by the outstanding youth project of education department of Hunan Province, China, under Grant 15B044.
机构署名:
本校为其他机构
院系归属:
信息与电子工程学院
摘要:
Accuracy is extensively considered a key issue for traffic big data prediction in a vehicular cyber-physical system (VCPS). Deep learning with super performance has been successfully applied to traffic prediction for feature learning. However, uncertain traffic big data pose a remarkable challenge on current deep learning models, which work in a vector space in a deterministic manner and fail to learn the features of uncertain traffic data. This study solves the problem of citywide traffic flow prediction to satisfy the accuracy requirement of ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com