版权说明 操作指南
首页 > 成果 > 详情

Automated classification of brain images using wavelet-energy and biogeography-based optimization

认领
导出
Link by 万方学术期刊
反馈
分享
QQ微信 微博
成果类型:
期刊论文
作者:
Yang, Gelan;Zhang, Yudong*;Yang, Jiquan;Ji, Genlin;Dong, Zhengchao;...
通讯作者:
Zhang, Yudong
作者机构:
[Yang, Gelan] Hunan City Univ, Sch Informat Sci & Engn, Yiyang 413000, Peoples R China.
[Zhang, Yudong; Wang, Shuihua; Ji, Genlin] Nanjing Normal Univ, Sch Comp Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China.
[Zhang, Yudong; Feng, Chunmei; Wang, Qiong; Yang, Jiquan] Jiangsu Key Lab 3D Printing Equipment & Mfg, Nanjing 210042, Jiangsu, Peoples R China.
[Dong, Zhengchao] Columbia Univ, Translat Imaging Div, New York, NY 10032 USA.
[Dong, Zhengchao] Columbia Univ, MRI Unit, New York, NY 10032 USA.
通讯机构:
[Zhang, Yudong] N
[Zhang, Yudong] J
Nanjing Normal Univ, Sch Comp Sci & Technol, Nanjing 210023, Jiangsu, Peoples R China.
Jiangsu Key Lab 3D Printing Equipment & Mfg, Nanjing 210042, Jiangsu, Peoples R China.
语种:
英文
关键词:
Classification;Pattern recognition;Support vector machine;Magnetic resonance imaging;Biogeography-based optimization
期刊:
Multimedia Tools and Applications
ISSN:
1380-7501
年:
2016
卷:
75
期:
23
页码:
15601-15617
基金类别:
This paper was supported by NSFC (610011024, 61273243, 51407095), Program of Natural Science Research of Jiangsu Higher Education Institutions (13KJB460011, 14KJB520021), Jiangsu Key Laboratory of 3D Printing Equipment and Manufacturing (BM2013006), Key Supporting Science and Technology Program (Industry) of Jiangsu Province (BE2012201, BE2014009-3, BE2013012-2), Special Funds for Scientific and Technological Achievement Transformation Project in Jiangsu Province (BA2013058), Nanjing Normal University Research Foundation for Talented Scholars (2013119XGQ0061, 2014119XGQ0080), and Science Research Foundation of Hunan Provincial Education Department (12B023).
机构署名:
本校为第一机构
院系归属:
信息与电子工程学院
摘要:
It is very important to early detect abnormal brains, in order to save social and hospital resources. The wavelet-energy was a successful feature descriptor that achieved excellent performances in various applications; hence, we proposed a novel wavelet-energy based approach for automated classification of MR brain images as normal or abnormal. SVM was used as the classifier, and biogeography-based optimization (BBO) was introduced to optimize the weights of the SVM. The results based on a 5 × 5-fold cross validation showed the performance of ...

反馈

验证码:
看不清楚,换一个
确定
取消

成果认领

标题:
用户 作者 通讯作者
请选择
请选择
确定
取消

提示

该栏目需要登录且有访问权限才可以访问

如果您有访问权限,请直接 登录访问

如果您没有访问权限,请联系管理员申请开通

管理员联系邮箱:yun@hnwdkj.com